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Abstract-A proper mixed convection parameter 5 = (0 Ru)‘/‘/(w Re)“*, with m = Pr/(l + Pr) and 
w = Pr/(l + Pr)‘i3, is proposed to replace the conventional parameters, Gr/Re”’ and Re/Gr*“, for the 
analysis of mixed convection wall plumes. New coordinates, 5 = c/(1 +c) and q = (y/x)[(w Re)“’ 
+(CT Ra)“‘], and dimensionless stream function and temperature of proper scales are also introduced. 
The resulting non-similar equations are solved by using a very effective finite-difference scheme. The 
obtained solutions are uniformly valid over the entire regime of mixed convection intensity from forced 

convection limit to free convection limit for fluids of any Prandtl number between 0.001 and 1000. 

INTRODUCTION 

MIXED convection wall plumes, which arise from a 
line thermal source embedded at the leading edge of 
a vertical flat plate, have only been studied recently 
by Rao et al. [ 11, and by Krishnamurthy and Gebhart 
[2]. However, the previous local similarity and non- 
similarity solutions [l] and the matched asymptotic 
expansions solution [2] do not cover the real mixed 

convection regime where the buoyancy force and the 
inertia force are comparable in magnitude. In 
addition, these solutions are presented only for 
Prandtl numbers around 1, i.e. Pr = 0.7 and 6.7 or 7. 

Mixed convection wall plumes in fluids of very small 
and very large Prandtl numbers have not been inves- 

tigated previously. 
In the present analysis of mixed convection wall 

plumes, we propose a proper mixed convection par- 
ameter [ = (0 Ra) “‘/(o Re) I”, with 0 = Pr/(l + Pr) 

and o = Pr/( 1 -t Pr) ‘I3 to replace the conventional , 
mixed convection parameters Gr*/Re’ [3], Gr/Re”* 

and Re/Gr*” [l]. This dimensionless group serves as 
a controlling parameter that determines the relative 

importance of the forced and the free convection for fluids 
of any Prandtl number. For large values of Prandtl 
number, [ reduces to Ra”5/Re”2 Prli3, while for small 
values of Prandtl number, [ = (Pr Ra) “‘/(Pr Re)‘/*. 

New coordinates, 5 = </(I +<) and q = (y/x)1 where 
1 = [(w Re)‘/*+ (CT Ra) “‘1 = (w Re)"*(l +[), are de- 
fined based on [. In addition, dimensionless stream 

function and dimensionless temperature with proper 
scales are defined based on 1. The similarity variable 

;r? = (y/x)(w Re)“’ has recently been proposed in 
ref. [4] for the forced convection heat transfer from 

wedges to fluids of any Prandtl number (0.0001 
< Pr < co). The corresponding similarity variable 

g = (y/x)(a Ra/4) ‘I4 for free convection from an iso- 
thermal vertical plate were introduced by Larsen and 
Arpaci [5]. 

The dimensionless group < (or 5) is a stretched 
streamwise coordinate measured from the leading 
edge. It also serves as an index of the relative strength 
of the buoyancy force to the inertia force in the flow. 
For the limiting case of pure forced convection, [ = 0 

and 5 = 0. While for the pure free convection limit, 

C -+ co and 5 = 1. The two physical interpretations of 
[ (or 5) are consistent. At the neighbourhood near 
the leading edge, forced convection is dominant in the 
near-field flow, whereas free convection is dominant 
in the far-field flow in the downstream region. 

The new formulation derived for mixed convection 
wall plumes was solved by a very effective numerical 
scheme which was developed in ref. [6] for the analyses 
of the plumes with governing equations of non-similar 
type. Numerical results are uniformly valid over the 
entire range of mixed convection intensity from the 
pure forced convection limit (5 = 0) to the pure free 
convection limit (5 = 1) for fluids of any Prandtl num- 
ber from 0.001 to 1000. 

ANALYSIS 

We consider an incompressible, laminar stream 
flowing parallel to a semi-infinite adiabatic vertical 
plate. A line thermal source, which constantly releases 
heat at a rate of Q per unit length, is embedded 
at the leading edge of the plate. Buoyancy-assisted 
plumes or buoyancy-opposed plumes would arise 
depending on the forced stream flows upward or 
downward, respectively. The boundary-layer equa- 
tions for the mixed convection wall plumes, using the 
Boussinesq approximation, are given by 

!Y+dti=O 
ay 

U~+vLfi+Esj?(T-T,) 
aY aY* 

(2) 

dT dT a*T 
uax+vay=“ayz 

where E is an index. For buoyancy-assisted plumes, 
E= 1, whereas for buoyancy-opposed plumes, 
E = - 1. The boundary conditions are 

u = 0, v = 0, aTjay = 0 at y = 0 (4) 

u = u,, T= T, asy+ co. (5) 

In addition, the conservation of energy requires that 
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NOMENCLATURE 

Cr local friction coefficient, 2z,/pu$ Y coordinate normal to plate. 

C,, specific heat capacity 

.f reduced stream function Greek symbols 

9 gravitational acceleration thermal diffusivity 

L length of the line thermal source z thermal expansion coefficient 

Pr Prandtl number, v/a i mixed convection parameter, 

Q rate of heat released by the line source per (0&2)“5/(WRe)“* 

unit length ? pseudo-similarity variable, (Y/x)1 

Ra local Rayleigh number, gpT*X3/Crv I9 dimensionless temperature, 

Re local Reynolds number, u,x/v IV- L’m-*l~ 
T fluid temperature 1 (wRe)“Z+(crRa)“5 

T, wall temperature fi dynamic viscosity 

T, free stream temperature V kinematic viscosity 

T* characteristic temperature of the line 5 i/(1+0 
source, Q/(pC,aL) P density 

u velocity component of the x-coordinate u Pr/(l + Pr) 

24, free-stream velocity rw wall shear stress 

V velocity component in the y-direction * stream function 

n coordinate from leading edge w Pr/(l +Pr)“.. 

the convective energy carried by the boundary-layer 
flow, across the horizontal plane at any x > 0, is equal 

Prf”‘+qff’‘-~f:f.‘+E(l+Pr)~‘B 

to the heat released by the line source. Hence 

Q=pC,,L m 
s 

u(T- T,) dy. (6) 
0 

In the present analysis, we propose 

i = (crRa)‘/5/(c0Re)“2 (7) 

to replace the conventional mixed convection par- 

ameters Gr2/Re5 [3], GrlRe512 and Re/Gr215 [I], where 
Re = u,x/v and Ra = ggT*x3/cw are the local Reyn- 
olds and Rayleigh numbers, respectively, and 
0 = Pr/( 1 + f’r), w = Pr/( 1 + Pr) I”. The characteristic 
temperature of the line source is defined as 

T* = Q/(pC,,aL). (8) 

Furthermore, we introduce new coordinates 

5(x) = i/U +i) and r?ky) = (y/xP (9) 

where the unified mixed-flow parameter I is defined 

by 

1 = [(~Re)‘~~-t(~Ra)“~] 

= (o Re)‘!2/(l -5) = (o Rt~)“~/l. 
(10) 

In terms of 1 and T*, a reduced stream function 
f(<,q) and a dimensionless temperature t3(5,~) are 
respectively defined as 

Q(L V) = [(T- T, )lT*l~ (11) 

where the stream function $(x, y) satisfies the con- 
tinuity equation (1), with u = @/ay and v = -8$/8x. 

By substituting equations (7t( 11) into equations 
(1 t(6), we obtain 

f’(c, co) = (1 -t)“(l +Pr)‘13, e(<, 02) = 0 (15) 

5 
nf’Bdq = 1. (16) 

0 

Equations (12) and (13) are readily reduced to a set 
of self-similar equations for the special cases of a 
pure forced convection plume (5 = 0) and a pure free 
convection plume ({ = l), separately. 

RESULTS AND DISCUSSION 

The set of non-similarity equations (12) and (13) 
subject to boundary conditions (14) and (15) and the 
integral equation (16) is solved by a very effective finite- 
difference scheme developed recently in ref. [6]. This 
numerical scheme is a modified version of Keller’s 
box method [7]. The essential modification is that 
an additional iteration scheme was joined to Keller’s 
procedure to deal with the integral equation (16) of 
normalized flux conservation. Details of the numerical 
method can be found in refs. [6, 71. Numerical results 
of f”(<, 0) and 0(<, 0) for buoyancy-assisted plumes 
are presented in Tables 1 and 2, respectively. 

The evolution of the profiles of the dimensionless 
velocity u/(a/x)l’ = S’(<, q) from the pure forced 
convection limit (5 = 0) to the pure free convection 
limit (5 = 1) are explicitly illustrated in Fig. 1 for 
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Table 1. Results of f” (5, 0) for buoyancy-assisted plumes 

5 0.001 0.01 0.1 
Pr 

0.7 7 100 

0 10.500 3.3370 1.1013 0.51748 0.35518 0.33371 
0.1 7.6587 2.4335 0.80306 0.37732 0.25934 0.24333 
0.2 5.4027 1.7163 0.56626 0.26604 0.18384 0.17174 
0.3 3.8361 1.2167 0.40017 0.18785 0.13225 0.12285 
0.4 3.4861 1.0964 0.35448 0.16509 0.11955 0.11335 
0.5 5.2880 1.6370 0.51107 0.23038 0.16333 0.15962 
0.6 9.7391 2.9681 0.89591 0.38650 0.26303 0.25680 
0.7 16.729 5.0421 1.4903 0.62408 0.41341 0.40093 
0.8 26.088 7.8182 2.2873 0.94340 0.61621 0.59538 
0.9 37.837 11.316 3.2969 1.3512 0.87720 0.84620 
1.0 52.114 15.585 4.5362 1.8562 1.2033 1.1602 

Table 2. Results of f7((, 0) for buoyancy-assisted plumes 

Pr 
r 0.001 0.01 0.1 0.7 7 100 

0 0.56429 0.56511 0.57102 0.58783 0.60594 0.60960 
0.1 0.62693 0.62786 0.63444 0.65311 0.67297 0.67737 
0.2 0.70522 0.70626 0.71364 0.73459 0.75584 0.76176 
0.3 0.80467 0.80579 0.81392 0.83700 0.85652 0.86514 
0.4 0.92656 0.92750 0.93452 0.95454 0.95960 0.96571 
0.5 1.0402 1.0403 1.0407 1.0408 1.0126 0.99450 
0.6 1.0808 1.0798 1.0722 1.0443 0.98184 0.93463 
0.7 1.0419 1.0404 1.0282 0.98316 0.9003 1 0.83999 
0.8 0.96388 0.96233 0.94883 0.89831 0.80882 0.74765 
0.9 0.87664 0.87518 0.86205 0.81265 0.72518 0.66820 
1.0 0.79334 0.79202 0.77996 0.73450 0.65331 0.60188 
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FIG. 2. Profiles of 0(&q) for buoyancy-assisted plumes, 
FIG. 1. Profiles of f’(&q) for buoyancy-assisted plumes, Pr = 0.7. 

Pr = 0.7. 

buoyancy-assisted plumes. The evolution of the 

dimensionless temperature profiles S(& q) is shown in 
Fig. 2. These figures also represent the variations of 
f’(r,q) and S(r,q) with increasing streamwise dis- 
tance from the line source. 

The wall shear stress 

‘5, = /@ulay),= 0 = p(crv/x2)A ‘f” (5,O) (17) 

is usually expressed in terms of the local friction 
coefficient C, = 2z,/(pui) as 

C,Re”* = 2[a”*/(l -t)‘]S”(&O). (18) 

It is seen from Fig. 3 that Cr Re ‘/* initially equals the 
forced convection value 0.66411 and increases with 
increasing mixed convection parameter c for the buoy- 
ancy-assisted flow condition. On the other hand, 
C,Re”* decreases as c increases for the buoyancy- 
opposed flow condition. A very sharp decrease in wall 
friction can be seen in Fig. 3 when the critical value 
of [ is approached. This indicates a breakdown of the 
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boundary-layer approximation, as recently noticed by 
Schneider and Wasel[8] from mixed convection above 
a horizontal plate. The critical values of i, beyond 
which the finite-difference solution diverges and 
d(C,Re’ ‘)/d[ B 1, are slightly larger than 0.667 for 
Pr = 0.1, 0.7 and 7. The reported critical values of 
GrlRe’:‘, at which flow separation occurs, are 0.1534 
and 0.0601 [I] for Pr = 0.7 and 7, respectively. These 
values are converted to [ = 0.6516 for Pr = 0.7 and 
< = 0.6459 for Pr = 7 by using the conversion relation 
,Y _ wU I(GrjRr5:2)I,?, 
,- 

The influence of mixed convection intensity < on 
the dimensionless wall temperature [(Tw- T&)/T*] 
(to Re) I.” of buoyancy-assisted plumes is presented in 
Fig. 4 for fluids of Pr = 0.001-1000. It can be seen 
from Fig. 4 that the dimensionless wall temperature 
[(Tw- T,)/T*](cl) Re)’ ’ decreases as the mixed con- 
vection parameter [ increases. Further examina- 
tion of Figs. 3 and 4 reveals that the knees of all the 
curves are at [ = 0 (1) for all Prandtl numbers. Conse- 
quently, the present mixed convection parameter 
< is the dimensionless group that properly serves 
as the controlling parameter governing the relative 
importance of the forced and the free convection for 
fluids of any Prandtl number. 

Opposing plume 

Pr=0.01-100 

0.1 1 10 

FIG. 3. Variation of C, Re’*’ with <. 
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FIG. 4. Variation of [(r, - T,)/Z’*](w Re)“* with [. 
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FIG. 5. Variation of [(T,- T,)/T*]Re’ ‘with [: -, local 
non-similarity solutions [I] ; - , breakdown point for 
buoyancy-opposed plumes ; -. -. asymptotes of con- 

vection limits. 

Figure 4 was replotted as Fig. 5 with 
[(r,-- T,)/T*]Re”* as the ordinate to separate the 
curves for various Prandtl numbers. The dimen- 
sionless wall temperature [(T,, - T, )/T*]Re”* for the 
buoyancy-opposed plume is also presented in Fig. 5. 
It increases with increasing < until the point of break- 
down is approached. Asymptotes of the convection 
limits are shown in this figure for Pr = 0.001,0.01 and 
1000. 

The previous local similarity and local non-simi- 
larity solutions [I] of weakly buoyant plumes and 
strongly buoyant plumes for Pr = 0.7 and 7 are also 
presented in Fig. 5 for comparison. As expected, these 
approximate solutions coincide with the present sol- 
utions in the regions near the forced convection limit 
and the free convection limit where they are valid. 

i 

1, 
10-q 10-L 1 10' lo* 

PI. 

FIG. 6. Variation of [(T, - T, )/T*]Ra’ ’ with Pr. 
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However, the local non-similarity solutions deviate Excellent agreement between these two solutions can 

from the finite-difference solutions when the strength be seen in Table 3. Since the set of equations are 

of the inertia force and buoyancy force are com- integrated step by step from 5 = 0 (X = 0) to 5 = 1, 

parable in magnitude. At the real mixed convection the accurate results of 5 = 1 ensure that the finite- 

regime, the accuracy of the previous approximate difference solutions are uniformly valid over the entire 

solutions deteriorates [ 1, 21. range of the mixed convection regime from the forced 

The variation of the dimensionless wall temperature convection limit to the free convection limit. 

[(r, - T, )/T* ]Ra ‘,‘5 as a function of the Prank1 num- 
ber is presented in Fig. 6 for some specified values of Acknowledgement-This work was supported by the 

5. From Fig. 6, it can be seen that this dimensionless 
National Science Council (NSC76-0402-EOOS-04). 

wall temperature decreases linearly from very small 
values of Prandtl number to Pr < 0.1 and that the 
rate of decrease slows down for Pr > 0.1. These curves 1, 
approach the asymptotes of Pr + m when Pr > 100. 

The accuracy of the present finite-difference solu- 
tions can also be verified by comparing the calculated 2. 
dimensionless wall temperature [(r,- T,)/T*]Ru”~ 

and the wall friction r,/[p(av/.~~)Ra”~] for the special 3, 
case of the free convection limit (5 = 1) with the 
reported data of the free convection wall plume [9]. 

. 4. 

Table 3. Comparison of wall temperature [(T,,- r,)/ 
T*]Ra”’ and wall friction ~,/p(av/x*)Ra~‘~ for the pure 

free convection wall plume (r = 1) 5. 

Pr 

[(TN-T,)/T*]Ra”’ 
Liburdv 

Present and Faeth 

r,/p(av/_~~)Ra~~~ 
Liburdv 6. 

Present and Faeih 

0.001 3.1590 - 0.82103 I. 

0.01 1.9934 1.9936 0.9775 1 0.97789 
0.1 I .2599 1.2601 1.0761 1.0163 
0.7 0.87712 0.87713 1.0900 1.0900 8. 
1 0.82874 0.83397 1.0899 1.0950 
7 0.67099 1.1107 

10 0.65462 0.65471 1.1174 0.87962 
100 0.60308 0.60381 1.1533 1.1542 9. 

1000 0.58782 1.1702 
______ 
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CONVECTION MIXTE DANS LES PANACHES PARIETAUX 

R&urn-n propose un paramitre approprie a la convection mixte 4’ = (a &z)‘@/(o Re)“‘, avec 
(r = Pr/(l +Pr) et w = Pr/(l + Pr)li3 pour remplacer les parametres conventionnels, Gr/Re”* et Re/Gr*“, 
dans I’analyse de la convection mixte pour les panaches parietaux. De nouvelles coordonnees, c = </( 1+ c) 
et q = (y/x) [(w Re)“‘+(u Ra)“s], une fonction de courant et une temperature adimensionnelles d’bhelles 
convenables sont introduites. Les equations resultantes non similaires sont resolues en utihsant un schema 
aux differences finies trts performant. Les solutions obtenues sont uniformement valables dans la region 
entitre de la convection mixte, depuis la convection for&e jusqu’a la convection naturelle, pour les fluides 

a nombre de Prandtl quelconque entre 0,001 et 1000. 

WANDNAHE AUFTRIEBSFAHNEN BE1 MISCHKONVEKTION 

Zusammenfassung-Als Ersatz fur die herkijmmlichen Parameter Gr/Re”* und Re/GF zur Analyse der 
wandnahen Auftriebsfahnen infolge Mischkonvektion wird ein Parameter l = (0 Ra)“‘/(w Re)“* vor- 
geschlagen, mit (r = Pr/(l + Pr) und UJ = Pr/(l + Pr)ln. AuBerdem werden neue Koordinaten, 5 = c/(1 +[) 
und q = (y/x) [(w Re)“‘+(a Ra)“‘] sowie eine dimensionslose Stromfunktion und Temperatur mit 
gee&meter Normierung eingefiihrt. Die sich ergebenden Nicht-Ahnlichkeits-Gleichungen werden unter 
Benutzung eines hochelhzienten Finite-Differenzen-Verfahrens gel&t. Die gewonnenen Lijsungen gelten 
einheitlich iiber den gesamten Bereich der Mischkonvektion van der Grer& fiir erzwungene Konvektion 

bis zur Grenze fur freie Konvektion fiir Fluide mit Prandtl-Zahlen zwischen 0,001 und 1000. 
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CMEIllAHHOKOHBEKTkiBHOE l-lO&%EMHOE FIPHCTEHHOE TEYEHME 

AHHoTaqHn-ripe aHaJIA3e II~HCT~HHO~~ IIOAE.eMHOii CMeIIIaHHOi? KOHBeKUHU npemaraercn wznonb30- 

BaTb BMecTo 06ILWIpUHsITbIX napabfeTpoe GrJRe”’ II Re/Gr”’ XapaKTepHbIii napaMeTp cMemamoii 

KOHBeKURN [ = (a Ra)“‘/(w Re)“2, ~AIZ d = h/(1 + Pr) A w = Pr/(l + Pr)li3. BBOAXTCX HoBbte KOO~AW 

HaTbl < = c/(1 + 0 ki ‘I = (y/x)[(w Re)“’ + (U Ru)“~], a TaKXE C IIOMOIAbEO XapaKTCpHblX MaCIIITa60B- 

6e3pa3MepHbIe &HKUHII TOKa II TeMnepaTypa. c lIOMOIIIbH3 3~~CKTAHbIX KOHCYHO-pa3HOCTHblX CXeM 

pCI”CHbI pC3,‘JIbTHp,‘IO”.IEE HeaBTOMOACJlbHbIe YpaBHeHW-L nOJIy’%HHbIC pCI”CHWI OAHHBKOBO CnpaBeA- 

JIABbI BO BCCM Akfana3OHC CMCLIIaHHOi? KOHBCKUllA OT npCACAbHOr0 CJIyW5l BbIHymACHHOii KOHBeKUllH A0 

YHCTO t?CTeCTBCHHOii AJIff WiAKOCTeii C WiCJIaMll npaHATJl5l OT 0,001 A0 l@)o. 


